4n^2+2n-2550=0

Simple and best practice solution for 4n^2+2n-2550=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4n^2+2n-2550=0 equation:



4n^2+2n-2550=0
a = 4; b = 2; c = -2550;
Δ = b2-4ac
Δ = 22-4·4·(-2550)
Δ = 40804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{40804}=202$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-202}{2*4}=\frac{-204}{8} =-25+1/2 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+202}{2*4}=\frac{200}{8} =25 $

See similar equations:

| 6x-2/5x=4x/7x | | 3x+2.5x+x=100 | | 2y=8+4 | | (0)=2x+2 | | 7x4=16 | | x2/4–3/5=5/7 | | (3x−5)=(3x+6) | | 5x+7=-3x | | 4+8(5x+10)=444 | | (4.75+x)/2=3.5 | | (2x+5)/(3-5x)=0 | | 35/5=x/4 | | (3x-5)=(5x+1) | | -x-133=161-7x | | 18x+90=18 | | 2x+4.20=9 | | 4=52–8n | | 7.5(b-4)=10b+5 | | -x-6=x+6 | | 2x-16+4x=44 | | 3n-5=-29 | | 2x+41=7x-19 | | v-15=15-27 | | 3=-2/5x+13 | | -15=-3+x | | 36+14x=-34 | | m^2+11-5=7 | | 4x-4+x+5=13+2x-3 | | -r+4=11 | | 5(7-8p)=7(-6p)+5p | | 8a−5a=18 | | 25(10^x)=1300 |

Equations solver categories